ในยุคที่โลกกำลังเดือดดาลด้วยวิกฤตการเปลี่ยนแปลงสภาพภูมิอากาศ เพียงแค่การ “ลด” การปล่อยก๊าซเรือนกระจกอาจไม่เพียงพออีกต่อไป โลกกำลังมองหาหนทางที่จะ “ดูด” คาร์บอนไดออกไซด์ที่สะสมอยู่ในชั้นบรรยากาศกลับคืนมา และหนึ่งในเทคโนโลยีที่ถูกพูดถึงมากที่สุดในรายงานของ IPCC และวงการพลังงานสะอาดทั่วโลกในขณะนี้คือ BECCS หรือ พลังงานชีวภาพร่วมกับการดักจับและกักเก็บคาร์บอน
บทความนี้จะพาคุณไปเจาะลึกทุกแง่มุมของ BECCS ตั้งแต่กลไกการทำงาน ข้อดีที่น่าทึ่ง ความท้าทายที่ต้องระวัง ไปจนถึงความคุ้มค่าทางเศรษฐกิจ เพื่อให้เห็นภาพชัดเจนว่าทำไมเทคโนโลยีนี้จึงถูกยกให้เป็นกุญแจสำคัญสู่เป้าหมาย Net Zero
BECCS คืออะไร? ทำไมจึงเป็นเทคโนโลยี “ติดลบ”
BECCS ย่อมาจาก Bioenergy with Carbon Capture and Storage ในภาษาไทยเราเรียกกันว่า พลังงานชีวภาพร่วมกับการดักจับและกักเก็บคาร์บอน เทคโนโลยีนี้มีความพิเศษตรงที่มันไม่ได้เป็นแค่พลังงานสะอาด (Carbon Neutral) เหมือนพลังงานหมุนเวียนทั่วไป แต่ถูกจัดอยู่ในกลุ่ม เทคโนโลยีการปล่อยก๊าซเรือนกระจกสุทธิเป็นลบ (Negative Emission Technologies – NETs)

เพื่อให้เข้าใจง่ายขึ้น ลองจินตนาการถึงสมการทางคณิตศาสตร์ของการปล่อยคาร์บอนดังนี้
- พลังงานฟอสซิล ขุดถ่านหินมาเผา = ปล่อยคาร์บอนเพิ่ม (+1)
- พลังงานชีวภาพทั่วไป ปลูกต้นไม้ (ต้นไม้ดูดคาร์บอน -1) นำมาเผา (ปล่อยคาร์บอน +1) = เท่าทุน หรือ ศูนย์ (Net Zero)
- BECCS ปลูกต้นไม้ (ดูดคาร์บอน -1) นำมาเผาแต่ดักจับควันเก็บไว้ไม่ให้ลอยสู่ฟ้า (ปล่อยคาร์บอน 0) = ผลลัพธ์คือ -1 (Negative Emission)
นี่คือหัวใจสำคัญที่ทำให้ BECCS กลายเป็นความหวังในการกู้คืนสภาพภูมิอากาศ เพราะมันทำหน้าที่เสมือนเครื่องดูดฝุ่นขนาดยักษ์ที่ช่วยดูด CO2 ออกจากบรรยากาศพร้อมกับผลิตไฟฟ้าให้เราใช้ไปพร้อมกัน
กระบวนการทำงานของ BECCS
การทำงานของระบบ BECCS ไม่ได้จบแค่ในโรงไฟฟ้า แต่กินความครอบคลุมทั้งห่วงโซ่อุปทาน โดยสามารถแบ่งออกเป็น 4 ขั้นตอนหลักดังนี้
1. การจัดหาชีวมวล (Biomass Sourcing)
จุดเริ่มต้นคือกระบวนการสังเคราะห์แสง พืช พืชพลังงาน หรือสาหร่ายจะดูดซับ CO2 จากอากาศมาเก็บไว้ในลำต้น ใบ หรือราก ในขั้นตอนนี้ธรรมชาติทำหน้าที่เป็นตัวดักจับคาร์บอนให้เราโดยอัตโนมัติ

2. การผลิตพลังงาน (Energy Conversion)
เมื่อได้วัตถุดิบชีวมวล จะถูกนำเข้าสู่กระบวนการแปรรูปเป็นพลังงาน ซึ่งทำได้หลายวิธี เช่น การเผาไหม้โดยตรงเพื่อผลิตไฟฟ้า การหมักเพื่อผลิตก๊าซชีวภาพ หรือการกลั่นเป็นเชื้อเพลิงชีวภาพ (Biofuels) ในขั้นตอนนี้ตามปกติ CO2 จะถูกปลดปล่อยออกมา

3. การดักจับคาร์บอน (Carbon Capture)
นี่คือขั้นตอนพระเอกที่ทำให้ BECCS แตกต่าง แทนที่จะปล่อยควันออกทางปล่อง โรงไฟฟ้าจะติดตั้งเทคโนโลยี CCS (Carbon Capture and Storage) เพื่อแยกก๊าซ CO2 ออกจากก๊าซชนิดอื่น ซึ่งเทคโนโลยีที่นิยมใช้ในปัจจุบันมี 3 รูปแบบหลัก จะอธิบายในตารางหัวข้อถัดไป
4. การขนส่งและกักเก็บ (Transport and Storage)
ก๊าซ CO2 ที่ดักจับได้จะถูกบีบอัดจนเป็นของเหลวและขนส่งผ่านท่อหรือเรือ เพื่อนำไปอัดกลับลงไปเก็บใต้ดินในชั้นหินทางธรณีวิทยาที่มีความลึกและปลอดภัย (Geological Storage) เช่น แหล่งน้ำมันเก่าที่สูบหมดแล้ว หรือชั้นหินอุ้มน้ำเค็มระดับลึก เพื่อให้มั่นใจว่ามันจะไม่รั่วไหลกลับสู่บรรยากาศอีกเป็นเวลาหลายพันปี

เทคโนโลยีที่เกี่ยวข้องและประเภทของชีวมวล
เพื่อให้เห็นภาพความหลากหลายของเทคโนโลยี BECCS เราสามารถจำแนกข้อมูลออกเป็นหมวดหมู่ได้ดังตารางต่อไปนี้
ตารางที่ 1 ประเภทของชีวมวลที่ใช้ใน BECCS
| ประเภทชีวมวล | ตัวอย่าง | ข้อดี | ข้อควรระวัง |
| พืชพลังงานโดยเฉพาะ (Dedicated Crops) | หญ้ามิสแคนถัส, ไม้โตเร็ว (ยูคาลิปตัส, กระถิน) | ให้ผลผลิตสูง ควบคุมคุณภาพง่าย | ต้องใช้ที่ดินเยอะ อาจแย่งพื้นที่ปลูกพืชอาหาร |
| เศษวัสดุเหลือทิ้งทางการเกษตร (Agricultural Residues) | ฟางข้าว, ชานอ้อย, ซังข้าวโพด | ราคาถูก ไม่ต้องใช้ที่ดินเพิ่ม เป็นการกำจัดของเสีย | การรวบรวมทำได้ยาก มีค่าความชื้นสูง |
| ขยะอินทรีย์และของเสีย (Organic Waste) | ขยะเศษอาหาร, น้ำเสียจากโรงงาน | ช่วยแก้ปัญหาขยะล้นเมือง ลดก๊าซมีเทน | กระบวนการคัดแยกยุ่งยาก |
| สาหร่าย (Algae) | สาหร่ายขนาดเล็ก (Microalgae) | โตเร็วมาก ไม่ต้องใช้ที่ดินเพาะปลูก ใช้แค่น้ำเสีย | เทคโนโลยีการเลี้ยงและเก็บเกี่ยวยังมีราคาสูง |
ตารางที่ 2 เทคโนโลยีการดักจับคาร์บอน (Capture Technologies)
| เทคโนโลยี | หลักการทำงาน | สถานะปัจจุบัน |
| Post-combustion | ดักจับ CO2 หลังจากการเผาไหม้เสร็จสิ้น โดยใช้สารเคมี (Solvents) ดูดซับ | ใช้แพร่หลายที่สุด สามารถติดตั้งเพิ่มในโรงไฟฟ้าเดิมได้ (Retrofit) |
| Pre-combustion | เปลี่ยนชีวมวลเป็นก๊าซสังเคราะห์ (Gasification) ก่อน แล้วแยก CO2 ออกก่อนจะนำไปเผา | ประสิทธิภาพสูง แต่ระบบซับซ้อนและลงทุนสูง |
| Oxy-fuel combustion | เผาชีวมวลด้วยออกซิเจนบริสุทธิ์แทนอากาศ ทำให้ได้ไอเสียที่มี CO2 เข้มข้นสูง แยกเก็บได้ง่าย | ต้นทุนสูงมากเพราะต้องใช้พลังงานในการผลิตออกซิเจน |
ทำไมทั่วโลกถึงฝากความหวังไว้ที่ BECCS
รายงานจากคณะกรรมการระหว่างรัฐบาลว่าด้วยการเปลี่ยนแปลงสภาพภูมิอากาศ (IPCC) ฉบับล่าสุด (AR6) ระบุชัดเจนว่า การจะรักษาระดับอุณหภูมิโลกไม่ให้เกิน 1.5 องศาเซลเซียสนั้น แทบจะเป็นไปไม่ได้เลยหากปราศจากการใช้เทคโนโลยี BECCS สาเหตุที่ทั่วโลกให้ความสนใจมีดังนี้
- ความสามารถในการสร้าง Negative Emissions อย่างที่กล่าวไปข้างต้น นี่คือเครื่องมือทางวิศวกรรมไม่กี่อย่างที่ช่วย “ลบ” คาร์บอนเก่าออกจากโลกได้จริง
- ความมั่นคงทางพลังงาน (Baseload Power) ต่างจากพลังงานแสงอาทิตย์หรือลมที่ต้องพึ่งพาสภาพอากาศ โรงไฟฟ้าชีวมวลแบบ BECCS สามารถเดินเครื่องได้ตลอด 24 ชั่วโมง ให้ความเสถียรแก่ระบบไฟฟ้า
- สร้างมูลค่าเพิ่มให้ภาคเกษตร เกษตรกรสามารถขายเศษวัสดุเหลือทิ้งทางการเกษตรเป็นเชื้อเพลิง สร้างรายได้เพิ่มและลดการเผาในที่โล่งซึ่งเป็นต้นเหตุของ PM2.5
- ใช้ประโยชน์โครงสร้างพื้นฐานเดิมได้ โรงไฟฟ้าชีวมวลที่มีอยู่แล้วสามารถดัดแปลงเพื่อติดตั้งระบบดักจับคาร์บอนได้ โดยไม่ต้องสร้างโรงไฟฟ้าใหม่ทั้งหมด
เหรียญอีกด้าน ความท้าทายและข้อโต้แย้งของ BECCS
แม้จะดูเหมือนเป็นฮีโร่กู้โลก แต่ BECCS ก็เผชิญกับเสียงวิพากษ์วิจารณ์และความท้าทายทางเทคนิคที่สำคัญมาก หากละเลยจุดเหล่านี้ BECCS อาจกลายเป็นปัญหาใหม่แทนที่จะเป็นทางออก
1. การแย่งชิงที่ดิน (Land Use Competition)
หากเราต้องการพึ่งพา BECCS เพื่อลดคาร์บอนในปริมาณมหาศาล เราจำเป็นต้องใช้พื้นที่ปลูกพืชพลังงานขนาดใหญ่มาก บางงานวิจัยระบุว่าอาจต้องใช้พื้นที่เทียบเท่ากับ 1 ถึง 2 เท่าของประเทศอินเดีย เพื่อให้ได้ผลลัพธ์ตามเป้าหมาย สิ่งนี้ก่อให้เกิดความกังวลว่าจะไปเบียดเบียนพื้นที่ป่าธรรมชาติ หรือแย่งพื้นที่ปลูกพืชอาหาร ซึ่งอาจทำให้ราคาอาหารทั่วโลกพุ่งสูงขึ้น
2. การใช้น้ำและปุ๋ย
การปลูกพืชพลังงานแบบเข้มข้นต้องใช้น้ำและปุ๋ยเคมีปริมาณมาก ซึ่งอาจส่งผลกระทบต่อแหล่งน้ำธรรมชาติและทำให้เกิดมลพิษทางน้ำจากการชะล้างปุ๋ย
3. ต้นทุนที่สูงลิ่ว
แม้เทคโนโลยีจะดีแค่ไหน แต่ถ้าแพงเกินไปก็เกิดได้ยาก ปัจจุบันต้นทุนในการดักจับและกักเก็บคาร์บอนผ่าน BECCS ยังคงสูง อยู่ที่ประมาณ 100 ถึง 200 ดอลลาร์สหรัฐต่อตันคาร์บอน (ประมาณ 3,500 – 7,000 บาท) ซึ่งสูงกว่าราคาคาร์บอนเครดิตในตลาดส่วนใหญ่ ทำให้ความคุ้มค่าในการลงทุนยังเป็นโจทย์ใหญ่
4. ความเสี่ยงจากการรั่วไหล
การอัดก๊าซ CO2 ลงไปเก็บใต้ดินต้องอาศัยความเชี่ยวชาญทางธรณีวิทยาขั้นสูง หากเลือกพื้นที่ไม่ดี หรือเกิดแผ่นดินไหว อาจเกิดการรั่วไหลของ CO2 กลับสู่บรรยากาศ ซึ่งจะทำให้ความพยายามทั้งหมดสูญเปล่า
กรณีศึกษาโครงการ BECCS ระดับโลก

เพื่อยืนยันว่าเรื่องนี้ไม่ใช่แค่นิยายวิทยาศาสตร์ มีหลายโครงการทั่วโลกที่กำลังเดินหน้าพัฒนา BECCS อย่างจริงจัง
Drax Power Station (สหราชอาณาจักร)
จากเดิมที่เป็นโรงไฟฟ้าถ่านหินขนาดยักษ์ Drax ได้เปลี่ยนตัวเองมาใช้เชื้อเพลิงชีวมวลอัดแท่ง (Wood Pellets) และกำลังทดสอบระบบ BECCS เพื่อมุ่งสู่การเป็นโรงไฟฟ้าที่มีสถานะ Carbon Negative แห่งแรกๆ ของโลก โครงการนี้ถือเป็นกรณีศึกษาที่สำคัญที่สุดในการเปลี่ยนผ่านโรงไฟฟ้าเก่า
Stockholm Exergi (สวีเดน)
โรงไฟฟ้าความร้อนร่วม (Combined Heat and Power) ในกรุงสตอกโฮล์ม กำลังพัฒนาโครงการ BECCS ที่ตั้งเป้าจะดักจับ CO2 ให้ได้ 800,000 ตันต่อปี โดยใช้เศษไม้จากอุตสาหกรรมป่าไม้เป็นเชื้อเพลิง รัฐบาลสวีเดนให้การสนับสนุนอย่างเต็มที่ในฐานะส่วนหนึ่งของแผนการเป็นประเทศ Carbon Neutral
โครงการในสหรัฐอเมริกา
สหรัฐฯ มีโครงการ BECCS เกิดขึ้นหลายแห่ง โดยเฉพาะในอุตสาหกรรมผลิตเอทานอล (Ethanol Fermentation) ซึ่งกระบวนการหมักให้ก๊าซ CO2 ที่บริสุทธิ์สูง ทำให้ต้นทุนการดักจับต่ำกว่าการเผาไหม้แบบปกติมาก โครงการเหล่านี้ได้รับการสนับสนุนจากมาตรการลดหย่อนภาษี 45Q ของรัฐบาลสหรัฐฯ
บทสรุปและอนาคตของ BECCS
BECCS ไม่ใช่ยาวิเศษที่จะรักษาโรคร้อนได้เพียงลำพัง และไม่ใช่ข้ออ้างที่จะทำให้เรายังคงใช้พลังงานฟอสซิลต่อไปได้ แต่ BECCS คือ “เครื่องมือจำเป็น” ในกระเป๋าเครื่องมือต่อสู้โลกร้อน โดยเฉพาะในการจัดการกับก๊าซเรือนกระจกส่วนเกินที่เราปล่อยออกมาแล้วในอดีต
อนาคตของ BECCS จะสดใสหรือไม่ ขึ้นอยู่กับ 3 ปัจจัยหลักคือ นโยบายภาครัฐ ที่ต้องสนับสนุนราคาคาร์บอนให้สูงพอจูงใจการลงทุน ความก้าวหน้าทางเทคโนโลยี ที่จะช่วยลดต้นทุนให้ถูกลง และ การจัดการที่ดินอย่างยั่งยืน เพื่อไม่ให้การแก้ปัญหาสิ่งแวดล้อมเรื่องหนึ่ง ไปสร้างปัญหาใหม่อีกเรื่องหนึ่ง ในวันที่โลกต้องการทางออกที่มากกว่าแค่คำสัญญา BECCS คือเทคโนโลยีที่พิสูจน์ให้เห็นว่า มนุษย์มีความสามารถที่จะ “ย้อนศร” กระบวนการทางธรรมชาติเพื่อรักษาบ้านหลังเดียวของเราเอาไว้ แต่เราต้องใช้อย่างระมัดระวังและชาญฉลาดที่สุด




