Highlight & Knowledge

ใช้ความร้อนในร่างกาย ชาร์จสมาร์ทวอทช์ ไม่ง้อแบตเตอรี่

วันนี้ขอเอาเรื่องราวของงานวิจัยในการพัฒนาการปลี่ยนความร้อนในร่างกายมาเป็นพลังงานสำหรับชาร์จสมาร์ทวอทช์ ที่ต้องบอกว่ามีความน่าสนใจเป็นอย่างมาก เพราะปกติเราต้องสวมใส่นาฬิกาอยู่แล้ว หากสามารถพัฒนาจนใช้ในชีวิตประจำวันได้จริง จะช่วยลดปัญหาเรื่องการชาร์จแบตให้กับสมาร์ทวอชไปได้เลย สำหรับงานวิจัยเรื่องนี้มาจากนักวิจัยจากมหาวิทยาลัยเทคโนโลยีควีนส์แลนด์ (QUT) ซึ่งอยู่ที่ประเทศออสเตรเลีย

นวัตกรรมชาร์จสมาร์ทวอทช์แห่งอนาคต

นักวิจัยจากมหาวิทยาลัยเทคโนโลยีควีนส์แลนด์ได้พัฒนา ฟิล์มพิเศษมีความยืดหยุ่น บางเบา ที่สามารถเปลี่ยนความร้อนจากร่างกายของเราให้กลายเป็นพลังงานไฟฟ้าได้ ซึ่งพลังงานไฟฟ้านี้ก็เพียงพอที่จะนำไปชาร์จอุปกรณ์อิเล็กทรอนิกส์ขนาดเล็ก เช่น สมาร์ทวอทช์ ได้นั่นเอง และในการพัฒนาครั้งนี้ก็เพื่อให้เราสามารถสวมใส่สมาร์ทวอทซ์ได้อย่างสบาย แต่ยังคงมีประสิทธิภาพในการชาร์จที่ดียิ่งขึ้น

หลักการทำงานของเทคโนโลยีนี้

หลักการทำงานก็จะประกอบไปด้วย 3 ส่วนหลักๆ ดังนี้

  • ฟิล์มเทอร์โมอิเล็กทริก (Thermoelectric Film) ฟิล์มพิเศษนี้มีคุณสมบัติในการแปลงความแตกต่างของอุณหภูมิให้เป็นไฟฟ้า เมื่อความร้อนจากร่างกายสัมผัสกับฟิล์ม จะเกิดกระแสไฟฟ้าขึ้นมา
  • ความยืดหยุ่น ฟิล์มนี้มีความยืดหยุ่นสูง ทำให้สามารถติดตั้งบนอุปกรณ์สวมใส่ได้อย่างสะดวกสบาย ไม่รบกวนการใช้งาน
  • ประสิทธิภาพ แม้ว่าจะยังไม่สามารถผลิตไฟฟ้าได้มากพอที่จะชาร์จสมาร์ทโฟนได้ แต่ก็เพียงพอสำหรับอุปกรณ์ขนาดเล็กอย่างสมาร์ทวอทช์ และยังมีแนวโน้มที่จะพัฒนาประสิทธิภาพให้ดียิ่งขึ้นในอนาคต

รู้จักกับ ฟิล์มเทอร์โมอิเล็กทริก (Thermoelectric Film)

ฟิล์มเทอร์โมอิเล็กทริก (Thermoelectric Film) เป็นวัสดุที่สามารถเปลี่ยนพลังงานความร้อนให้กลายเป็นพลังงานไฟฟ้าหรือในทางกลับกันเปลี่ยนพลังงานไฟฟ้าให้กลายเป็นพลังงานความร้อนได้ โดยอาศัยหลักการทางเทอร์โมอิเล็กทริก นั่นก็คือ Seebeck Effect (เมื่อมีการนำฟิล์มเทอร์โมอิเล็กทริกมาวางในบริเวณที่มีความแตกต่างของอุณหภูมิ อิเล็กตรอนจะเคลื่อนที่จากบริเวณที่มีอุณหภูมิสูงไปยังบริเวณที่มีอุณหภูมิต่ำ ทำให้เกิดกระแสไฟฟ้าขึ้น) และ Peltier Effect (เมื่อมีการส่งกระแสไฟฟ้าผ่านฟิล์มเทอร์โมอิเล็กทริก ด้านหนึ่งของฟิล์มจะดูดซับความร้อน อีกด้านหนึ่งจะคายความร้อนออกมา)

ภาพแผ่นฟิล์มที่ติดกับผิวหนังเพื่อเปลี่ยนความร้อนในร่างกายให้เป็นพลังงาน จากการวิจัยของ QUT : Copyright QUT

โครงสร้างของ ฟิล์มเทอร์โมอิเล็กทริก (Thermoelectric Film)

ฟิล์มเทอร์โมอิเล็กทริก มักประกอบด้วยชั้นของวัสดุนำไฟฟ้าชนิด P และชนิด N สลับกันหลายชั้น เพื่อเพิ่มประสิทธิภาพในการแปลงพลังงาน วัสดุที่นิยมใช้ในการผลิตฟิล์มเทอร์โมอิเล็กทริก ได้แก่

  • Bismuth telluride (Bi2Te3) มีประสิทธิภาพสูงที่อุณหภูมิห้อง ซึ่งเป็นเซมิคอนดักเตอร์ที่เหมาะมากสำหรับการแปลงความร้อนให้เป็นไฟฟ้าสำหรับการใช้งานที่ใช้พลังงานต่ำ เช่น เครื่องตรวจจับอัตราการเต้นของหัวใจ
  • Lead telluride (PbTe) เหมาะสำหรับใช้งานที่อุณหภูมิสูง ประกอบด้วยธาตุตะกั่ว (Lead) และเทลลูเรียม (Tellurium) ซึ่งมีคุณสมบัติเป็นเซมิคอนดักเตอร์ (Semiconductor) ที่มีความน่าสนใจเป็นพิเศษในด้านเทอร์โมอิเล็กทริก (Thermoelectric) เนื่องจากสามารถแปลงความร้อนให้เป็นพลังงานไฟฟ้าได้อย่างมีประสิทธิภาพ
  • Silicon germanium (SiGe) ใช้ในอุปกรณ์ที่ต้องการอุณหภูมิการทำงานสูง เป็นวัสดุเซมิคอนดักเตอร์ชนิดหนึ่งที่ได้จากการนำซิลิคอน (Silicon) มาผสมกับเจอร์เมเนียม (Germanium) ในสัดส่วนที่แตกต่างกัน ซึ่งจะทำให้ได้คุณสมบัติทางไฟฟ้าที่แตกต่างกันออกไป โดยทั่วไปแล้ว SiGe จะถูกนำมาใช้ในอุปกรณ์อิเล็กทรอนิกส์ที่มีความต้องการประสิทธิภาพสูง เช่น ทรานซิสเตอร์ความเร็วสูงในวงจรรวม (Integrated Circuit) หรือ IC

สำหรับวัสดุต่างๆ ที่นำมาผลิตฟิล์มเทอร์โมอิเล็กทริก อย่างเช่น บิสมัทเทลลูไรด์ (Bismuth Telluride) เป็นวัสดุที่นิยมใช้ในการผลิตอุปกรณ์เทอร์โมอิเล็กทริก เนื่องจากมีประสิทธิภาพในการแปลงความร้อนเป็นพลังงานไฟฟ้าสูง แต่ก็มีข้อจำกัดบางประการ เช่น ราคาสูง ความเป็นพิษ และความเปราะบาง ทำให้ไม่เหมาะสำหรับการนำไปใช้งานในอุปกรณ์อิเล็กทรอนิกส์ที่สวมใส่ได้ จึงทำให้ทางนักวิจัยได้มีการนำ นาโนไบน์เดอร์ (Nano Binder) เข้ามาใช้แทน

นาโนไบนเดอร์ (Nano Binder)

นาโนไบนเดอร์ (Nano Binder) เป็นสารที่มีขนาดเล็กระดับนาโนเมตร ซึ่งมีบทบาทสำคัญในการเชื่อมต่ออนุภาคนาโนเข้าด้วยกัน ทำให้เกิดเป็นวัสดุที่มีคุณสมบัติพิเศษ เช่น ความแข็งแรงสูง น้ำหนักเบา และมีความยืดหยุ่น การนำนาโนไบน์เดอร์มาใช้ในการผลิตฟิล์มเทอร์โมอิเล็กทริกแทนบิสมัทเทลลูไรด์ มีข้อดีหลายประการ ดังนี้

  • ต้นทุนต่ำ นาโนไบน์เดอร์หลายชนิดมีราคาถูกกว่าบิสมัทเทลลูไรด์ ทำให้ต้นทุนการผลิตต่ำลง
  • มีความยืดหยุ่น วัสดุที่ผลิตจากนาโนไบน์เดอร์มักมีความยืดหยุ่นสูง เหมาะสำหรับการนำไปผลิตอุปกรณ์ที่สวมใส่ได้
  • เป็นมิตรต่อสิ่งแวดล้อม นาโนไบน์เดอร์บางชนิดมีอันตรายน้อยกว่าบิสมัทเทลลูไรด์
  • สามารถปรับแต่งสมบัติได้ โดยการเลือกชนิดและปริมาณของนาโนไบน์เดอร์ที่แตกต่างกัน สามารถปรับแต่งสมบัติของวัสดุให้เหมาะสมกับการใช้งานได้

กระบวนการผลิตฟิล์มเทอร์โมอิเล็กทริกจากนาโนไบน์เดอร์

  1. การเตรียมสารผสม ผสมอนุภาคนาโนของวัสดุนำไฟฟ้า (เช่น ซิลิคอนเจอร์เมเนียม) กับนาโนไบน์เดอร์ เพื่อให้ได้สารผสมที่มีความหนืดเหมาะสมสำหรับการพิมพ์
  2. การพิมพ์ ใช้เทคนิคการพิมพ์ เช่น การพิมพ์สกรีน หรือการพิมพ์อิงค์เจ็ท เพื่อพิมพ์สารผสมลงบนแผ่นพลาสติกหรือโลหะ
  3. การเผา นำฟิล์มที่พิมพ์ได้ไปเผาที่อุณหภูมิสูง เพื่อให้เกิดการเชื่อมต่อระหว่างอนุภาคต่างๆ อย่างแข็งแรง

ในงานวิจัยก็ได้ทดสอบประสิทธิภาพของฟิล์มตัวนี้ด้วยการ สร้างเครื่องกำเนิดไฟฟ้าขนาดเล็กขึ้นมา และมีการใช้แผ่นฟิล์มขนาด A4 ซึ่งแผ่นฟิลม์นี้สามารถผลิตไฟฟ้าได้ 1.2 มิลลิวัตต์ต่อตารางเซนติเมตรเลยทีเดียว และมีข้อจำกัดเรื่องสภาวะแวดล้อมที่น้อยมากๆ ทำให้สามารถนำไปใช้เพื่อจ่ายพลังงานให้กับอุปกรณ์ได้หลากหลายรูปแบบ ถือว่าเป็นแผ่นฟิล์มที่มีประสิทธิภาพในการจ่ายพลังงานที่สูงมากในขณะนี้ นอกจากนี้ด้วยข้อดีในเรื่องของการปรับขนาดได้ มีความยืดหยุ่นสูง ทำให้เหมาะกับการนำไปใช้กับสมาร์ทวอทช์ และอุปกรณ์สำหรับสวมใส่ได้หลากหลายมากขึ้น

Professor Zhi-Gang Chen นักวิจัยเรื่องเทอร์โมอิเล็กทริกเพื่อการเปลี่ยนความร้อนในร่างกายให้เป็นพลังงาน

นอกจากนี้ยังสามารถประยุกต์ไปใช้กับอุปกรณ์อื่นๆ ได้อีกมากมาย ด้วยข้อดีที่สามารถติดตั้งได้ในพื้นผิวต่างๆ ความสามารถในการแปลงพลังงานกลับคืนได้ ช่วยในเรื่องของการลดอุณหภูมิได้อีกด้วย เหมาะกับการนำไประบายความร้อนให้กับชิปต่างๆ ที่ปกติมักจะมีความร้อนในระหว่างการทำงานที่ค่อนข้างสูง เช่น สมาร์ทโฟน อุปกรณ์คอมพิวเตอร์ และอุปกรณ์ภายในรถยนต์

สำหรับงานวิจัยนี้ต้องขอบอกว่ามีความน่าสนใจมาก ซึ่งนักวิจัยก็เห็นแนวโน้มในการพัฒนาในทิศทางที่ดี และคาดว่าน่าจะต้องปรับปรุงและแก้ไขปัญหาบางอย่างเพิ่มเติม ไม่ว่าจะเป็นเรื่องของความทนทาน อุปกรณ์ที่ใช้ในการผลิต รวมถึงต้นทุนในการผลิตเชิงพาณิชย์ เพื่อให้สามารถนำไปผลิตเพื่อใช้งานได้จริงๆ ในราคาที่คุ้มค่าต่อการลงทุน และเมื่อมีการผลิตมาใช้จริง ปัญหาเรื่องการชาร์จสมาร์ทวอทช์ก็จะหมดไปทันที ไม่ต้องมาคอยชาร์จกันบ่อยๆ โดยเฉพาะยี่ห้อยอดนิยมที่ต้องชาร์จกันทุกวัน

Reference: interestingengineering.com
Photo : freepik.com

รู้จักกับ “คาร์บอนเครดิตป่าไม้” คืออะไร? มีข้อกำหนดอะไรบ้าง

สำหรับบทความนี้ทางทีมงานจะนำทุกท่านไปรู้จักกับ "คาร์บอนเครดิตป่าไม้" กัน ซึ่งแน่นอนว่าเป็นเรื่องที่ได้รับความสนใจอย่างมาก เพราะโครงการนี้นอกจากจะช่วยในเรื่องของการลดก๊าซเรือนกระจกแล้ว ยังสามารถสร้างมูลค่าได้อีกด้วย คาร์บอนเครดิตป่าไม้ คืออะไร? คาร์บอนเครดิตป่าไม้ (Forest…

Super E-Platform เทคโนโลยีชาร์จรถไฟฟ้าใหม่ล่าสุด 1,000 กิโลวัตต์ ชาร์จ 5 นาที วิ่งได้ 400 กม.

ในยุคที่โลกกำลังเผชิญกับวิกฤตพลังงานและปัญหาสิ่งแวดล้อม การเปลี่ยนผ่านสู่ยานยนต์ไฟฟ้า (Electric Vehicle: EV) กลายเป็นหนึ่งในทางออกที่สำคัญ อย่างไรก็ตาม ความท้าทายใหญ่ของรถยนต์ไฟฟ้าคือระยะเวลาในการชาร์จที่ยังช้ากว่าการเติมน้ำมันในรถยนต์สันดาปภายใน (ICE) แต่ล่าสุด…

ร่างแผนบริหารจัดการเชื้อเพลิง OIL PLAN 2024

เนื้อหาในวันนี้ เราจะพาทุกท่านไปรู้จักกับร่างแผนบริหารจัดการเชื้อเพลิงของ กรมธุรกิจพลังงาน ซึ่งได้จัดทำร่างแผนบริหารจัดการน้ำมันเชื้อเพลิง พ.ศ.2567–2580 (Oil Plan 2024) ออกมาเรียบร้อยแล้ว โดยเป็น…