โลกของเรากำลังเดินทางมาถึงจุดเปลี่ยนครั้งสำคัญทางประวัติศาสตร์ เมื่อคำว่า “ภาวะโลกร้อน” (Global Warming) ดูจะเบาบางเกินไปที่จะอธิบายปรากฏการณ์สุดขั้วที่เราเผชิญอยู่ จนสหประชาชาติต้องนิยามใหม่ว่าเป็นยุค “โลกเดือด” (Global Boiling) แม้ทั่วโลกจะตื่นตัวกับการลดการปล่อยก๊าซเรือนกระจกผ่านการใช้รถยนต์ไฟฟ้าหรือพลังงานแสงอาทิตย์ แต่ข้อมูลทางวิทยาศาสตร์ล่าสุดชี้ชัดว่า “แค่ลดการปล่อยใหม่นั้นยังไม่พอ”
ทำไมถึงไม่พอ คำตอบอยู่ที่ก๊าซคาร์บอนไดออกไซด์ปริมาณมหาศาลที่มนุษย์ปล่อยสะสมไว้ในชั้นบรรยากาศตลอด 200 ปีที่ผ่านมา ก๊าซเหล่านี้ยังคงวนเวียนและทำหน้าที่กักเก็บความร้อนต่อไป แม้ว่าวันนี้เราจะหยุดโรงงานทุกแห่งและหยุดรถทุกคันในโลกทันที อุณหภูมิโลกก็จะยังคงสูงขึ้นต่อไปอีกนาน ดังนั้นโจทย์ใหญ่ของมนุษยชาติจึงเปลี่ยนไป ไม่ใช่แค่การหยุดปล่อย (Zero Emissions) แต่ต้องเป็นการ “ลบ” ของเก่าออกไปด้วย หรือที่เรียกว่า “การปล่อยก๊าซเรือนกระจกเป็นลบ” (Negative Emissions)
นี่คือที่มาของเทคโนโลยีที่ได้รับการขนานนามว่าเป็น “เครื่องฟอกอากาศของโลก” อย่าง Direct Air Capture (DAC) หรือการดักจับคาร์บอนจากอากาศโดยตรง นวัตกรรมที่เปลี่ยนจากรับบทตั้งรับมาเป็นฝ่ายรุกในการดูดซับมลพิษออกจากท้องฟ้า บทความนี้จะพาคุณเจาะลึกทุกมิติของ DAC ตั้งแต่กลไกทางเคมีที่ซับซ้อนไปจนถึงอภิมหาโปรเจกต์ระดับโลกที่กำลังเกิดขึ้นจริงในปี 2025
Direct Air Capture (DAC) คืออะไรและทำงานอย่างไร
Direct Air Capture (DAC) คือเทคโนโลยีวิศวกรรมขั้นสูงที่ออกแบบมาเพื่อดักจับก๊าซคาร์บอนไดออกไซด์ (CO2) โดยตรงจากบรรยากาศ ไม่ใช่แค่จากปล่องควันโรงงาน หากเปรียบเทียบให้เห็นภาพ โรงงานดักจับคาร์บอนทั่วไป (CCS) เปรียบเสมือนการเอาถุงไปครอบท่อไอเสียรถยนต์ แต่ DAC คือเครื่องฟอกอากาศขนาดยักษ์ที่ตั้งอยู่ที่ไหนก็ได้บนโลกเพื่อดูดซับ CO2 ที่กระจายตัวเจือจางอยู่ในอากาศ
ความท้าทายทางวิศวกรรมของ DAC คือความเข้มข้นของ CO2 ในอากาศทั่วไปนั้นมีเพียงประมาณ 0.04% เท่านั้น ซึ่งเบาบางกว่าในควันจากโรงงานถึง 300 เท่า การจะดักจับสิ่งที่มีอยู่น้อยนิดให้ได้อย่างมีประสิทธิภาพ จึงต้องอาศัยกระบวนการทางเคมีที่แม่นยำและทรงพลัง ปัจจุบันเทคโนโลยี DAC แบ่งออกเป็น 2 ระบบหลักที่ขับเคี่ยวกันในตลาดโลก
1 ระบบตัวทำละลายของเหลว (Liquid Solvent DAC)
ระบบนี้เป็นเทคโนโลยีรุ่นบุกเบิกและใช้ในโรงงานขนาดใหญ่ หลักการทำงานคล้ายกับการฟอกอากาศในระดับอุตสาหกรรม
การดักจับ พัดลมขนาดยักษ์จะดูดอากาศผ่านหอคอยที่มีสารละลายสารเคมี (เช่น โพแทสเซียมไฮดรอกไซด์) ไหลผ่าน สารละลายนี้จะทำปฏิกิริยาเคมีผูกติดกับ CO2 กลายเป็นเกลือคาร์บอเนตเหลว และปล่อยอากาศบริสุทธิ์กลับคืนสู่ธรรมชาติ
การแยก ของเหลวที่จับ CO2 ไว้แล้วจะถูกส่งเข้าสู่กระบวนการที่สอง โดยทำปฏิกิริยากับแคลเซียมไฮดรอกไซด์ จนเกิดเป็นเม็ดของแข็งแคลเซียมคาร์บอเนต
การเผา เม็ดของแข็งจะถูกนำไปเผาด้วยความร้อนสูงถึง 900 องศาเซลเซียส เพื่อปลดปล่อย CO2 บริสุทธิ์ออกมาสำหรับนำไปเก็บหรือใช้งาน ส่วนสารเคมีที่เหลือจะถูกนำกลับไปหมุนเวียนใช้ใหม่
จุดเด่น เหมาะสำหรับการดักจับในปริมาณมหาศาลระดับล้านตัน (Megaton scale)
ข้อสังเกต ใช้น้ำเปลืองมากเนื่องจากการระเหย และต้องการพลังงานความร้อนสูง
2 ระบบตัวดูดซับของแข็ง (Solid Sorbent DAC)
เทคโนโลยีนี้กำลังมาแรงและเป็นที่นิยมในหมู่สตาร์ทอัพรุ่นใหม่ เพราะมีความยืดหยุ่นสูงกว่า
การดักจับ อากาศจะถูกดูดผ่านแผ่นกรองที่มีลักษณะคล้ายรังผึ้ง ซึ่งเคลือบด้วยสารเคมีพิเศษที่มีคุณสมบัติ “เหนียว” ต่อ CO2 โดยเฉพาะ เมื่อลมพัดผ่าน CO2 จะติดอยู่บนผิววัสดุเหมือนแมลงติดใยแมงมุม
การแยก เมื่อแผ่นกรองอิ่มตัว ระบบจะปิดผนึกเป็นห้องสุญญากาศและใช้ความร้อนระดับปานกลาง (ประมาณ 80 ถึง 120 องศาเซลเซียส) เพื่อทำให้ CO2 หลุดออกมา
จุดเด่น ใช้พลังงานต่ำกว่า สามารถใช้ความร้อนทิ้งจากโรงงานหรือพลังงานความร้อนใต้พิภพได้ และที่สำคัญคือ “แทบไม่ใช้น้ำ” หรือในบางกรณีสามารถผลิตน้ำออกมาเป็นผลพลอยได้ด้วย
ข้อสังเกต ความทนทานของวัสดุกรองอาจมีอายุการใช้งานจำกัด และต้องเปลี่ยนบ่อยกว่าระบบของเหลว
ทำไมโลกต้องพึ่งพา Negative Emissions
หลายคนอาจสงสัยว่าทำไมเราไม่มุ่งเน้นแค่การปลูกป่า คำตอบคือ “คณิตศาสตร์ของสภาพภูมิอากาศ” ไม่เข้าข้างเราอีกต่อไป การจะบรรลุเป้าหมาย Net Zero หรือการปล่อยก๊าซเรือนกระจกสุทธิเป็นศูนย์ภายในปี 2050 นั้น เราจำเป็นต้องกำจัดคาร์บอนออกจากอากาศให้ได้ปีละ 10,000 ล้านตัน (10 Gigatons)
ภาคอุตสาหกรรมบางประเภทเรียกว่า “Hard-to-abate sectors” หรือกลุ่มที่ลดการปล่อยได้ยากมาก เช่น อุตสาหกรรมการบิน การเดินเรือขนส่งสินค้า และการผลิตเหล็กหรือปูนซีเมนต์ เทคโนโลยีปัจจุบันยังไม่สามารถทำให้เครื่องบินข้ามทวีปใช้แบตเตอรี่ไฟฟ้าได้ ดังนั้น Negative Emissions จึงเข้ามาเป็นตัวแปรสำคัญในการ “หักลบ” มลพิษที่ภาคส่วนเหล่านี้ยังคงปล่อยออกมา เพื่อให้สมการสุทธิกลายเป็นศูนย์
นอกจากนี้ DAC ยังมีข้อได้เปรียบที่เหนือกว่าวิธีธรรมชาติในแง่ของ “ความถาวร” (Permanence) ต้นไม้อาจถูกไฟไหม้หรือตาย ซึ่งจะปล่อยคาร์บอนกลับคืนสู่บรรยากาศ แต่ CO2 ที่ดักจับด้วย DAC และนำไปอัดลงในชั้นหินลึกใต้ดิน (Geological Storage) จะกลายเป็นหินและถูกกักเก็บไว้ได้นานนับพันหรือล้านปี
ตารางเปรียบเทียบ DAC vs ป่าไม้ vs เทคโนโลยีอื่น
เพื่อให้เห็นภาพชัดเจนว่าทำไมเราถึงต้องลงทุนในเทคโนโลยีราคาแพงอย่าง DAC แทนที่จะปลูกต้นไม้เพียงอย่างเดียว ตารางด้านล่างนี้ได้รวบรวมข้อมูลเปรียบเทียบประสิทธิภาพของแต่ละวิธี
ปัจจัยเปรียบเทียบ Direct Air Capture (DAC) การปลูกป่า (Afforestation) Bioenergy with CCS (BECCS) พื้นที่ที่ใช้ (Land Use) น้อยมาก (ประมาณ 0.012 ล้านเฮกตาร์ ต่อการดักจับ 1 พันล้านตัน) โรงงาน DAC กินพื้นที่น้อยแต่ประสิทธิภาพสูงมหาศาล (ต้องใช้พื้นที่เทียบเท่าประเทศขนาดใหญ่ เช่น เม็กซิโก เพื่อดักจับปริมาณเท่ากัน) อาจกระทบพื้นที่เกษตรกรรมปานกลางถึงมาก ต้องใช้พื้นที่ปลูกพืชพลังงานจำนวนมากการใช้น้ำ (Water Usage) ระบบของแข็ง (Solid) ใช้น้อยมาก หรือผลิตน้ำได้ระบบของเหลว (Liquid) ใช้มาก (5-6 ตันน้ำ ต่อ 1 ตันคาร์บอน)มาก ขึ้นอยู่กับชนิดพันธุ์ไม้และสภาพอากาศ อาจแย่งน้ำจากชุมชนมากที่สุด ต้องใช้น้ำในการปลูกพืชและการแปรรูปความถาวร (Permanence) สูงมาก (1,000+ ปี) เมื่ออัดลงหินปูนหรือชั้นหินบะซอลต์จะกลายเป็นแร่ธาตุถาวรต่ำถึงปานกลาง (10-100 ปี) เสี่ยงต่อไฟป่า โรคระบาด และการตัดไม้ทำลายป่าสูง หากมีการกักเก็บคาร์บอนใต้ดินอย่างถูกต้องต้นทุนปัจจุบัน (ต่อตัน CO2) สูง ($600 – $1,000) แต่มีแนวโน้มลดลงเหลือ $150 ในอนาคตต่ำ ($10 – $50) แต่ต้นทุนอาจสูงขึ้นเมื่อพื้นที่เริ่มขาดแคลน**ปานกลาง ($100 – $200)** รายได้เสริมจากการขายไฟฟ้าช่วยลดต้นทุนสุทธิได้ สถานที่ตั้ง (Location) อิสระ ตั้งที่ไหนก็ได้ที่มีพลังงานสะอาดและแหล่งเก็บ ใกล้ทะเลทรายหรือพื้นที่รกร้างจำกัด ต้องมีดินและสภาพอากาศที่เหมาะสมจำกัด ต้องอยู่ใกล้แหล่งปลูกพืชและโครงสร้างพื้นฐาน
*ข้อมูลในตารางนี้แสดงให้เห็นว่า DAC ไม่ได้มาแทนที่การปลูกป่า แต่มาเพื่อปิดจุดอ่อนเรื่องพื้นที่และความถาวร ซึ่งเป็นข้อจำกัดหลักของวิธีธรรมชาติ
อัปเดตโครงการยักษ์ใหญ่และผู้นำตลาดโลก (2024-2025)
ปี 2025 ถือเป็นปีทองของการก้าวกระโดดจาก “โรงงานทดลอง” สู่ “อุตสาหกรรมเต็มรูปแบบ” มีโครงการที่น่าจับตามองดังนี้
1 Project Stratos (สหรัฐอเมริกา)
นี่คือโปรเจกต์เรือธงที่ทั่วโลกจับตามอง ดำเนินการโดยบริษัท Occidental Petroleum (1PointFive) ร่วมกับเทคโนโลยีจาก Carbon Engineering โรงงานนี้ตั้งอยู่ในรัฐเท็กซัส และมีกำหนดเริ่มเดินเครื่องเชิงพาณิชย์ในช่วงกลางปี 2025
ความพิเศษ Stratos จะเป็นโรงงาน DAC ที่ใหญ่ที่สุดในโลก โดยมีกำลังการผลิตในการดักจับ CO2 สูงถึง 500,000 ตันต่อปี ซึ่งมากกว่าโรงงานที่ใหญ่ที่สุดก่อนหน้านี้ถึง 100 เท่า
กลยุทธ์ ใช้ระบบ Liquid Solvent ที่ผ่านการพิสูจน์แล้ว และขาย “Carbon Removal Credit” ให้กับบริษัทยักษ์ใหญ่อย่าง Amazon และ ANA All Nippon Airways
2 โรงงาน Mammoth (ไอซ์แลนด์)
บริหารงานโดย Climeworks บริษัทสัญชาติสวิสที่เป็นผู้บุกเบิกวงการ เริ่มเปิดดำเนินการเฟสแรกไปแล้วในปี 2024
ความพิเศษ ใช้เทคโนโลยี Solid Sorbent ที่เป็นมิตรต่อสิ่งแวดล้อม และใช้พลังงานความร้อนใต้พิภพ (Geothermal) ของไอซ์แลนด์ในการเดินเครื่อง 100% ทำให้เป็นกระบวนการที่สะอาดหมดจด
การเก็บ ก๊าซ CO2 ที่ดักจับได้จะถูกผสมกับน้ำและอัดลงไปในชั้นหินบะซอลต์ใต้ดินด้วยเทคโนโลยีของบริษัท Carbfix ซึ่งจะทำปฏิกิริยากลายเป็นหินภายในเวลาไม่ถึง 2 ปี
3 Project Cypress (รัฐหลุยเซียนา สหรัฐฯ)
เป็นโครงการที่ได้รับเงินทุนสนับสนุนมหาศาลจากกระทรวงพลังงานสหรัฐฯ (DOE) ภายใต้งบประมาณ Infrastructure Law
ความร่วมมือ เป็นการจับมือกันระหว่าง Climeworks (ระบบ Solid) และ Heirloom สตาร์ทอัพมาแรงที่ใช้เทคโนโลยี Carbon Mineralization หรือการใช้หินปูนมาเป็นตัวดูดซับคาร์บอน ซึ่งเป็นวิธีที่ต้นทุนต่ำและขยายขนาดได้ง่าย
สถานะ อยู่ในช่วงเริ่มก่อสร้างและคาดว่าจะกลายเป็นศูนย์กลาง (Hub) ของการดักจับคาร์บอนแห่งใหม่ของโลก
เศรษฐศาสตร์และนโยบาย แรงขับเคลื่อนสำคัญ
เทคโนโลยีจะดีแค่ไหนก็ไปไม่รอดถ้าขาดแรงจูงใจทางเศรษฐกิจ ในปี 2024-2025 เราได้เห็นการเปลี่ยนแปลงครั้งใหญ่ของนโยบายรัฐบาลในหลายประเทศ
กฎหมาย Inflation Reduction Act (IRA) ของสหรัฐฯ
สหรัฐอเมริกาได้แก้เกมเรื่องต้นทุนที่สูงลิ่วของ DAC ด้วยการปรับปรุงมาตรา 45Q Tax Credit โดยในปี 2025 รัฐบาลสหรัฐฯ ยินดีจ่ายเครดิตภาษีให้สูงถึง $180 ต่อตัน สำหรับ CO2 ที่ดักจับจากอากาศและนำไปฝังกลบอย่างถาวร นโยบายนี้เปรียบเสมือนการเติมเชื้อเพลิงให้ไฟแห่งการลงทุนลุกโชน ทำให้ภาคเอกชนกล้าที่จะทุ่มเงินสร้างโรงงาน DAC เพราะเห็นจุดคุ้มทุนที่ชัดเจนขึ้น
ตลาดคาร์บอนเครดิตคุณภาพสูง (High-Quality Carbon Credits)
ตลาดคาร์บอนกำลังแบ่งเกรดชัดเจนขึ้น คาร์บอนเครดิตแบบเก่าที่เกิดจากการ “หลีกเลี่ยงการปล่อย” (Avoidance) เริ่มมีความน่าเชื่อถือน้อยลง ในขณะที่เครดิตจากการ “กำจัดคาร์บอน” (Removal) อย่าง DAC กำลังเป็นที่ต้องการของบริษัทระดับโลก เช่น Microsoft, Stripe และ Shopify ซึ่งยอมจ่ายในราคาสูงเพื่อแลกกับเครดิตที่ตรวจสอบได้จริงและถาวร
ความเคลื่อนไหวในเอเชีย
ญี่ปุ่นกำลังใช้เวที Expo 2025 Osaka เพื่อโชว์ศักยภาพเทคโนโลยี DAC โดยรัฐบาลญี่ปุ่นตั้งเป้าหมายที่จะเป็นผู้นำด้านเทคโนโลยี Green Innovation และเริ่มมีการร่างนโยบายสนับสนุนคล้ายกับสหรัฐฯ เพื่อดึงดูดการลงทุนเข้าสู่ประเทศ
ความท้าทายที่ยังรอการแก้ไข
แม้ภาพฝันจะดูสวยงาม แต่ความจริงยังมีอุปสรรคก้อนโตขวางอยู่
ความต้องการพลังงาน (Energy Intensity) DAC ต้องใช้พลังงานมหาศาล โดยเฉพาะพลังงานความร้อน หากโรงงาน DAC ต้องใช้ไฟฟ้าจากถ่านหินเพื่อมาดักจับคาร์บอน ก็เท่ากับเป็นการตำน้ำพริกละลายแม่น้ำ ดังนั้น DAC จะสมเหตุสมผลก็ต่อเมื่อใช้พลังงานสะอาด (Renewable Energy) หรือพลังงานนิวเคลียร์เท่านั้น ซึ่งในหลายพื้นที่ พลังงานสะอาดยังมีจำกัดและต้องแย่งกันใช้กับภาคส่วนอื่น
ต้นทุนที่ยังสูงเกินเอื้อม เป้าหมายของวงการคือการกดราคาให้ต่ำกว่า $100 ต่อตัน เพื่อให้แข่งขันได้ แต่ปัจจุบันยังอยู่ที่ระดับ $600+ ซึ่งต้องอาศัยการผลิตซ้ำๆ (Learning by doing) และการขยายขนาด (Economy of Scale) เพื่อลดต้นทุน เหมือนกับที่แผงโซลาร์เซลล์เคยทำได้สำเร็จในช่วง 20 ปีที่ผ่านมา
โครงสร้างพื้นฐาน การดักจับได้แล้วไม่ใช่จุดจบ เราต้องการท่อส่งก๊าซ (Pipeline) และแหล่งกักเก็บใต้ดินที่ปลอดภัย ซึ่งต้องอาศัยการสำรวจทางธรณีวิทยาและการยอมรับจากชุมชนในพื้นที่ ไม่เช่นนั้น CO2 ที่จับมาได้ก็ไม่มีที่ไป
บทสรุป
Direct Air Capture ไม่ใช่ยาวิเศษที่จะมาแทนที่การลดการปล่อยก๊าซเรือนกระจก เรายังจำเป็นต้องเปลี่ยนไปใช้รถยนต์ไฟฟ้า เลิกใช้ถ่านหิน และประหยัดพลังงานเป็นอันดับแรก แต่ DAC คือ “ประกันชีวิต” กรมธรรม์สำคัญที่โลกต้องทำไว้ เพื่อจัดการกับมลพิษที่เราปล่อยเกินมาและไม่สามารถลดได้ด้วยวิธีปกติ
ในปี 2025 เรากำลังยืนอยู่บนรอยต่อของยุคสมัยที่มนุษย์ไม่ได้แค่เรียนรู้ที่จะอยู่ร่วมกับธรรมชาติ แต่กำลังใช้สติปัญญาและเทคโนโลยีเพื่อ “ซ่อมแซม” ธรรมชาติที่บุบสลาย การเติบโตของเทคโนโลยี Negative Emissions คือสัญญาณแห่งความหวังว่า แม้เราจะเคยทำลายโลกไปมากเพียงใด เราก็ยังมีหนทางและความมุ่งมั่นที่จะกอบกู้สมดุลคืนมา เพื่อส่งต่อโลกที่เย็นลงให้กับลูกหลานของเรา